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Introduction

Overspecification, or mentioning more attibutes than is necessary, has long been a puzzle for
pragmatics since it appears to violate the Gricean maxim of quantity (Grice, 1975).

Degen et al. (2020) proposed a model of overspecification in the Rational Speech Act
framework (RSA, Frank and Goodman (2012)). According to their model, overspecification
emerges as a result of individual modifiers being “noisy”: they relax the Boolean semantics
of the original RSA model and assume instead that objects have properties like size and color
to varying degrees, and therefore adding more modifiers adds information. They show that
their model can successfully explain preference for overmodifying with color over size (color is
assumed to be less noisy), more overpecification with an increase in scene variation (Koolen
et al., 2013), and increased mention of atypical properties (Westerbeek et al., 2015).

The model by Degen et al. (2020) captures an important source of overspecification:
how well modifiers apply to the objects. However, there is another important source of
overspecification that we would like to model: that emerging from not scanning the whole
scene carefully to identify the optimal referring expression. It has been shown that as visual
scenes get more complex, people tend to avoid extensive visual search and sometimes start
speaking despite not having scanned the whole scene (Elsner et al., 2018; Koolen et al.,
2013). We propose a model in the RSA framework where overspecification emerges from
speaker uncertainty about whether a given feature is unique to the target or whether it may
be present elsewhere in the visual scene. We claim that such overspecification is rational:
when the cost of verifying feature uniqueness outweighs the production cost, one may save
effort while still ensuring communicative success by focusing on the target and mentioning
more of its features.

Model

In the standard RSA model, the literal listener Lo(o|m) identifies the target object o given
an utterance u, by combining P(ulo), the probability that the utterance u would be used to
describe object o, with the prior probability over objects P(0):

Lo(olu) o< P(ulo) - P(0) (1)

P(ulo) is 1 if u is literally true of o and 0 otherwise.
The speaker S7 seeks to maximize the probability that the listener will identify the correct
object while minimizing production cost:

Si(ulo) x exp(a - (logLy(o|u) — Cost(u)) (2)



As production becomes more costly, shorter utterances become more likely. Vanilla RSA,
therefore, allows for production of longer utterances, but, if both are unambiguous, longer
utterances are never more likely than shorter utterances. If there are no production costs,
the speaker will be equally likely to produce a true utterance of any length.

We extend the standard RSA model based on the following idea: the more complex the
visual scene, the more effortful it becomes to scan it fully and verify the uniqueness of the
target’s properties. Therefore, the speaker is uncertain that the target features are unique
and may overspecify to account for the possibility that their utterance is actually ambiguous.

We operationalize this idea with a mechanism we’ll call miraging. Let’s look at an exam-
ple. The top panel of Figure 1 shows three monsters which differ along 3 dimensions (ears,
mouths and tails), and mentioning any one of the three features would uniquely identify the
target. While these three monsters are the only ones actually present in the display, the
speaker allows for the possibility that there may be other objects that share a subset of the
target’s features (let’s call them mirage competitors).

In the proposed model, mirage competitors are generated by combining target features
with distractor features. In the example in the top panel of Figure 1, the target has fea-
tures {es, my, t;} (ears, mouth and tail), and the two distractors in the display have features
{eq1,ma1,ta1} and {ego, mga,tae} respectively. If the set of competitors contains, for ex-
ample, {e;, my,tq1}, then the two-word utterance {e;, m;} becomes ambiguous because it
could refer to the target or the mirage competitor. We hypothesize that the set of mi-
rage competitors contains every strict subset of the target’s features (i.e., in our example,
{{et,ma,ta},{eq, mi,ta},..., {€q, ms, t:}}). Thus, longer utterances become more likely as they
rule out more mirage competitors.

The amount of speaker uncertainty about the uniqueness of the target’s features is mod-
ulated by the hyperparameter m, which corresponds to the amount of the probability mass
of P(o) (in Lo in (1)) that gets shifted to the mirage competitors:

o) (1|T97|n) if 0 € S, where S = target U distractors
o) =
if o € M, where M is the set of mirage competitors
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The higher m is, the more likely it is the speaker believes the utterance to not uniquely
identify the target, which results in more overspecification.

In the low-variation condition (bottom panel of Figure 1), where the three monsters
only differ in one feature, we expect no overspecification to result from miraging, because
combining subsets of target and distractor features does not generate any new combinations
not already present in the display. Figure 2 shows model predictions for the high- and low-
variation conditions for different values of mirage mass m.

Degen et al. (2020)’s model also predicts more overspecification in the high-variation
condition, but for a different reason: because each individual feature description is noisy and
may also apply to one of the distractors. This may indeed be a relevant factor if the speaker
is unsure what to call the features and is worried that “squiggly tail”, for instance, may be
incorrectly interpreted.

Experiment

We conducted an experiment to verify our model’s prediction that we’d expect more over-
specification when more features differ between the items in the display.



89 participants were shown arrays of three monsters like in Figure 1 and were asked to
describe the monster in the red box. We manipulated feature variation: each participant saw
6 high-variation trials (all 3 features differ, top panel of Figure 1), and 6 low-variation trials
(only one feature differs, bottom panel of Figure 1), as well as 6 fillers (2 features differ).

In addition, we included a between-participants production cost manipulation, where each
participant typed their response either using their computer keyboard (low effort) or a virtual
keyboard with an unfamiliar randomly generated layout (high effort).

We found, as predicted by our model, that people included more redundant features in
their description in the high variation condition (8=0.94 (0.09), p<.001) and in the low
production effort condition (f=2.31 (0.34), p<.001). In addition, there was an interaction
between the feature variation and production cost, whereby the effect of feature variation
was greater in the low production effort condition (5=0.17 (0.09), p=.048).

Discussion

We propose a model of overspecification in the RSA framework which implements redundancy
as a speaker’s uncertainty about the uniqueness of a particular feature. We then conduct a
production experiment where we manipulate the amount of features that are different between
the target and distractors and show that our model generates the same pattern of results,
with more overspecification in the case when more features are different.

However, the same pattern of results is also predicted by the continuous semantics RSA
model (Degen et al., 2020), although for a different reason: because the individual feature
descriptions are noisy and including more descriptors adds information. One could try to
control for such nameability effects by establishing a clear one-to-one mapping of objects
and their names, for example, in a training phase. Our early attempts to do that, however,
unexpectedly resulted in ceiling effects in overspecification: having just learned names for the
features, people seemed to think they were expected to use all of them on each trial.

Another, arguably more compelling approach for validating the present model would be
to manipulate the amount of miraging directly by altering the display in a way that would not
affect the noisiness of the labels’ semantics. A prediction follows from our model that when it
is made visually easier to establish feature uniqueness, overspecification should decrease (cor-
responding to the decrease of probability mass that gets allocated to the mirage competitors
in the model). We piloted an experiment where we compare participants’ overspecification
rate for a sorted vs. unsorted array containing the same elements, where we expected less
overspecification in the sorted case. However, the manipulation appears to be too subtle: the
effect was not significant, although it was numerically in the right direction. Therefore, we
now plan to conduct additional experiments where visual complexity is manipulated in other
ways. One such idea is to manipulate the spacing of items in the display: we would predict
less overspecification if items are closer together since we expect it to be easier to perform
comparisons.

Finally, in our experiment we observed a lot of individual variation: some people al-
ways named every feature, while others quickly figured out that naming just one was always
sufficient. In the model, those differences could potentially be captured by the rationality pa-
rameter « or by the amount of miraging probability mass m (corresponding approximately to
how thoroughly an individual tends to scan the display). We plan to investigate the sources
of these individual differences and their implications for modeling in future work.



Figure 1: High- (top) and low-variation (bottom) conditions.
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Figure 2: The number of features predicted by the model (a) in the high- and low-variation
conditions as a function of mirage mass m and (b) in the visually difficult condition as a
function of mirage mass and production cost (multiplier of message length, expressed as the
number of features).
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