
Neural DTS: A hybrid NLI system combining two procedural approaches

Mizuki Iinuma Sora Tagami Yuta Takahashi Daisuke Bekki
Ochanomizu University

{iinuma.mizuki, tagami.sora, takahashi.yuta, bekki}@is.ocha.ac.jp

1 Introduction

According to Marr (1982)’s three-level methodology
in cognitive science, it is claimed that an information
processing system should be understood in the order
of the computational level, the procedural (in other
words, representational and algorithmic) level, and the
hardware-implementational level. From this perspec-
tive, on the one hand, the study of truth-conditional
semantics in theoretical linguistics, insofar as it targets
the meaning of a sentence, can be regarded as being
concerned with the computational level with some ex-
ceptions such as van Benthem’s semantic automata.
Then, the proof-theoretic semantics, which emerged in
the mid-1990s as an alternative to the truth-conditional
semantics, can also be regarded as a progress from the
computational level to the procedural level in the sense
that its conception of truth is defined via proof con-
structions and therefore is implementable, given the
recent progress of theorem provers for higher-order
logics (Chatzikyriakidis and Luo, 2014, 2016; Daido
and Bekki, 2020).

On the other hand, in recent years, end-to-end neu-
ral NLI systems based on large language models (Lan
et al., 2020; Raffel et al., 2020; He et al., 2021)
achieved a huge success. From the viewpoint of Marr’s
methodology, those systems satisfy one of the require-
ments of the computational theory by specifying the
inputs and outputs in training data, although it is ar-
guable that end-to-end neural NLI systems can only
partially satisfy the requirements because the func-
tions to be computed by those systems are required
to be stated explicitly. Then, at the procedural level,
they just automatically compute the values of parame-
ters by fine-tuning the model. This methodology is in
sharp contrast with that of proof-theoretic semantics,
in which the understanding of the procedural level is
pursued via hypothesis verification.

These two approaches complement each other in
terms of their performances (precision vs. coverage,
depth vs. speed, and their explanatory nature). There-
fore, it is natural to seek a hybrid semantic system
integrating the two approaches, not only from the tech-
nical point of view but also from the methodological
point of view, comparing the two approaches to the pro-

cedural level of semantics. Neural DTS (Bekki et al.,
2023) is one such hybrid approach for NLI, incorpo-
rating a deep neural network within dependent type
semantics (DTS), a proof-theoretic semantics based
on dependent type theory (Bekki, 2014; Bekki and Mi-
neshima, 2017). Neural DTS uses neural classifiers to
determine the truth of atomic predicates. Then, it uses
inference rules of DTS, which are natural deduction
rules for dependent type theory, to construct a proof
for complex propositions.

Although a learning algorithm for Neural DTS is
depicted in Bekki et al. (2022), an actual implemen-
tation of Neural DTS has been a remaining issue. In
particular, it was not obvious how the execution of
a type checking algorithm and the feed-forward neu-
ral classifiers co-exist while neural classifiers can be
trained by data.

In this work, we provide an implementation of Neu-
ral DTS by combining the implementations of neural
classifiers and that of DTS’s type checking algorithm
so that it can process the interaction of neural classi-
fiers’ predictions and type-logical inferences, includ-
ing negations, conjunctions, and disjunctions. Our im-
plemantation of type checking algorithm is based on
Löh et al. (2010). Also, we implemented three differ-
ent neural classifiers and compared their performances:
multi-layer perceptrons (MLPs), neural tensor network
(NTN) as introduced in Socher et al. (2013), and NTN
as introduced in Ding et al. (2015).

We will demonstrate and evaluate the behavior of
this implementation by using complex propositions
consisting of binary relations. Overall, Neural DTS
is a feasible NLI system which shows mixed advan-
tages of two procedural approaches: proof-theoretic
semantics and neural NLI systems.

2 Dependent Type Semantics

DTS is a semantics of natural language based on the
Dependent Type Theory that can define types depend-
ing on terms. In DTS, meaning is indicated by the
types of Dependent Type Theory. A sentence is true
if there exists a term with the type of the semantic
representation of the sentence. By using various types
such as Π type and Σ type, even complex linguistic



phenomena such as quantifiers and presuppositional
binding can be systematically understood. However,
in the current DTS, even semantically similar entities,
such as a dog and a puppy, are treated as separate
entities, so that the fact that they are similar entities
cannot be used for inference unless these concepts are
related by explicit knowledge. Also, representations
are not learnable, so they must be introduced as ax-
ioms in inference. Neural DTS addresses these points
by incorporating a classifier.

3 Inference using type checking algorithm

A type checking algorithm for Neural DTS infers
whether a relational proposition is true or not. In
the process of such an inference, a type checking al-
gorithm uses the result of prediction by the trained
classifier in Neural DTS.

3.1 Classifier with MLP and NTN

As a comparative experiment, we implemented an
MLP and two versions of an NTN, the original (Socher
et al., 2013) and Ding et al. (2015) which provide the
two different ways of representing binary relations.
These networks are implemented using Hasktorch1, a
Haskell interface for deep learning.

MLP The MLP in this study is formulated as

f(c1, r, c2) = σ(W3(σ(W2(σ(W1(c1⊕r⊕c2)+b1))+b2))+b3),

where c1, c2 are class embeddings, r is a relational
embedding, and c1 ⊕ r ⊕ c2 is the concatenation of
these embeddings. As usual, Wi and bi are a weight
and a bias for each i ∈ {1, 2, 3}, and σ is the sigmoid
function as an activation function.

NTN Socher’s NTN is formulated by using the bi-
linear tensor product cT1W

[1:k]
r c2 as follows:

g(c1, r, c2) = UT
r tanh

(
cT1W

[1:k]
r c2 + Vr

[
c1
c2

]
+ br

)
,

where Vr ∈ Rk×2d, Ur ∈ Rk, and br ∈ Rk.

3.2 Type checking algorithm in Neural DTS

A type checking algorithm takes a context Γ, a term t,
and a type A as inputs and then determines whether t
is of type A in Γ or not, in other words, whether Γ ⊢
t : A holds or not. By the so-called Curry-Howard
correspondence, a type corresponds to a proposition,
and a term of type A corresponds to a proof of the
proposition A. This means that we can check whether
a witness term w+

nmk (resp. w−
nmk) is a proof of a

proposition cnrmck (resp. the negation ¬(cnrmck))
by checking whether w+

nmk is of type cnrmck (resp.
w−
nmk is of type ¬(cnrmck)), where

1https://github.com/hasktorch/

• w+
nmk is of type cnrmck if the prediction by the

classifier h(cn, rm, ck) is YES with h ∈ {f, g},

• w−
nmk is of type ¬(cnrmck) if the prediction by

the classifier h(cn, rm, ck) is NO.

In other words, we reduce the typability of a wit-
ness term to the prediction by a neural classifier
h(cn, rm, ck) explained above. Our algorithm calls
a neural classifier by the type checking of a witness
term, and predicts whether cnrmck holds or not by
using the results of feeding the relation rm and classes
cn, ck into the classifier.

Then, we combine the type checking of a witness
term with the usual type checking algorithm in de-
pendent type theory, so that the algorithm provides
an inference procedure for the set of propositions
composed from relational propositions and their nega-
tions by conjunction and disjunction. The type check-
ing of a witness term is thus the part of our algo-
rithm in which a neural network is incorporated. For
instance, suppose that the prediction of the classi-
fier g(ci, rj , ck) is YES while the prediction of the
classifier g(cl, rm, cn) is NO, namely, g(ci, rj , ck) ≥
threshold and g(cl, rm, cn) < threshold hold. In
this case, the procedure to infer the conjunction
cirjck ∧ ¬(clrmcn) is illustrated as follows:

g(ci, rj , ck) ≥ threshold

⊢ w+
ijk : cirjck

g(cl, rm, cn) < threshold

⊢ w−
lmn : ¬(clrmcn)

⊢ (w+
ijk, w

−
lmn) : cirjck ∧ ¬(clrmcn)

4 Experiment

To demonstrate the advantage of a hybrid ap-
proach, we conducted an experiment to make infer-
ences on a set of propositions by the above type
checking algorithm. This set consists of proposi-
tions in the one of the forms cnrmck, ¬(cnrmck),
(cnrmck) ∧ (cn′rm′ck′), or (cnrmck) ∨ (cn′rm′ck′).
We use the Yago4 dataset2 to learn and infer rela-
tional propositions between classes. It consists of
13,000,788 entities and 110 relations, and each en-
tity is assigned to one or more of the 249 applica-
ble classes. For example, in the triplet (Windows_10,
copyrightHolder, Microsoft), the Windows_10’s
class is [CreativeWork, Product, Thing], and
the Microsoft’s class is [Organization, Thing].
In this case, we can associate the classes of triplet
and entity, e.g., [CreativeWork, copyrightHolder,
Organization]. The triples thus created without
duplication are used as positive data, and the same
number of triplets not included in the positive data

2https://yago-knowledge.org/downloads/yago-4

https://github.com/hasktorch/
https://yago-knowledge.org/downloads/yago-4


are randomly generated and used as negative data.
There are 12,066 training triplets, 4,022 testing triplets,
and 4,022 validation triplets. We used 1,000 training
epochs with 0.5 as the binary classification threshold
and a learning rate of 5e−2.

Table 1: Evaluate values by classifier

Value Accuracy Precision Recall f1
MLP 0.9614 0.9517 0.9722 0.9618

Socher’s NTN 0.9801 0.9710 0.9898 0.9803
Ding’s NTN 0.4953 0.4961 0.6054 0.5454

Table 1 shows the evaluate values of inferences of
atomic relational proposition for each classifier. Com-
pared with MLP, Socher’s NTN was more accurate,
while Ding’s NTN was less accurate. This accuracy
affects the accuracy of the overall inference.

The following triplets are examples of successful in-
ference. [Photograph,copyrightHolder,Person]
is a valid relation triplet and was cor-
rectly inferred to be valid in the experiment.
[Chapter,copyrightHolder,Pond] is an invalid
triplet, which is also correctly inferred not to be
valid. These were not included in training dataset,
but were knowledge acquired by learning. Our type
checking algorithm has an embedded neural network,
so it can perform type checking on unknown atomic
propositions. On the other hand, some of failure
cases are as follows. [MusicPlaylist, children,
Person] is an invalid relation triplet, but it has been
inferred to be valid. Conversely, [Book, hasPart,
Chapter] is a valid triplet, but it has been inferred that
it does not hold. Thus, the accuracy of the classifier
is crucial because it can fail to acquire knowledge.
We then confirmed that we were able to connect to
symbolic reasoning in negation, conjunction, and
disjunction using the reasoning results of these atomic
propositions.

5 Conclusion

We provided an implementation of Neural DTS as
a type checking algorithm in which MLP and NTN
are incorpolated as neural classifiers. While MLP
and NTN make inferences on relations between two
classes in our algorithm, logical inferences via type
checking are performed on complex propositions such
as negations, conjunctions and disjunctions. Due to the
logical nature of Neural DTS, inferences on the com-
plex propositions are always correct when the truth
of relations are correctly predicted. Unlike most log-
ical systems, in addition, neural classifiers can make
correct predictions even on unknown relationships.
Thus, Neural DTS shows mixed advantages of proof-
theoretic semantics and neural NLI systems as their

hybrid.
In future work, we plan to conduct an experiment

among entities as well. In addition, the symbolic infer-
ence procedure can only handle negation, conjunction,
and disjunction at the moment, but as mentioned above,
if we add the types such as Π type and Σ type to the
procedure, we will be able to handle a certain range of
natural language sentences in this framework. We plan
to extend our procedure to these types in the future
to enhance the advantages of DTS as semantics. This
type checking and neural network piping in Neural
DTS is significant for the future implementation of
Neural DTS.

References
Daisuke Bekki. 2014. Representing anaphora with de-

pendent types. In Logical Aspects of Computational
Linguistics - 8th International Conference, LACL 2014,
Toulouse, France, June 18-20, 2014. Proceedings, vol-
ume 8535 of Lecture Notes in Computer Science, pages
14–29. Springer.

Daisuke Bekki and Koji Mineshima. 2017. Context-passing
and underspecification in dependent type semantics. In
Stergios Chatzikyriakidis and Zhaohui Luo, editors, Mod-
ern Perspectives in Type-Theoretical Semantics, pages
11–41. Springer International Publishing, Cham.

Daisuke Bekki, Ribeka Tanaka, and Yuta Takahashi. 2022.
Learning knowledge with neural DTS. In Proceedings
of the 3rd Natural Logic Meets Machine Learning Work-
shop (NALOMA III), pages 17–25, Galway, Ireland. As-
sociation for Computational Linguistics.

Daisuke Bekki, Ribeka Tanaka, and Yuta Takahashi. 2023.
Integrating Deep Neural Networks with Dependent Type
Semantics. In Roussanka Loukanova, Peter LeFanu
Lumsdaine, and Reinhard Muskens, editors, Logic and
Algorithms in Computational Linguistics 2021 (LA-
CompLing2021), Studies in Computational Intelligence.
Springer Cham.

Stergios Chatzikyriakidis and Zhaohui Luo. 2014. Natural
language inference in coq. J. Log. Lang. Inf., 23(4):441–
480.

Stergios Chatzikyriakidis and Zhaohui Luo. 2016. Proof
assistants for natural language semantics. In Logical
Aspects of Computational Linguistics. Celebrating 20
Years of LACL (1996-2016) - 9th International Confer-
ence, LACL 2016, Nancy, France, December 5-7, 2016,
Proceedings, volume 10054 of Lecture Notes in Com-
puter Science, pages 85–98.

Hinari Daido and Daisuke Bekki. 2020. Development of an
automated theorem prover for the fragment of dts. In the
17th International Workshop on Logic and Engineering
of Natural Language Semantics (LENLS17).

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan. 2015.
Deep learning for event-driven stock prediction. Re-
search Center for Social Computing and Information
Retrieval Harbin Institute of Technology, China.

https://doi.org/10.1007/978-3-662-43742-1_2
https://doi.org/10.1007/978-3-662-43742-1_2
https://doi.org/10.1007/978-3-319-50422-3_2
https://doi.org/10.1007/978-3-319-50422-3_2
https://aclanthology.org/2022.naloma-1.3
https://doi.org/10.1007/978-3-031-21780-7_11
https://doi.org/10.1007/978-3-031-21780-7_11
https://doi.org/10.1007/s10849-014-9208-x
https://doi.org/10.1007/s10849-014-9208-x
https://doi.org/10.1007/978-3-662-53826-5_6
https://doi.org/10.1007/978-3-662-53826-5_6
http://www.nlpr.ia.ac.cn/cip/~liukang/liukangPageFile/DeepLearningForEventDrivenStockPrediction.pdf


Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu
Chen. 2021. DEBERTA: Decoding-Enhanced BERT
with disentangled attention. In International Conference
of Learning Representations (ICLR2021).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut. 2020. AL-
BERT: A Lite BERT for self-supervised learning of lan-
guage representations. In International Conference of
Learning Representations (ICLR2020).

Andres Löh, Conor McBride, and Wouter Swierstra. 2010.
A tutorial implementation of a dependently typed lambda
calculus. Fundam. Informaticae, 102(2):177–207.

David Marr. 1982. Vision: A Computational Investigation
into the Human Representation and Processing of Visual
Information. Henry Holt and Co., Inc., New York, NY.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J. Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21:1–67.

Richard Socher, Danqi Chen, Christopher D Manning, and
Andrew Ng. 2013. Reasoning with neural tensor net-
works for knowledge base completion. In Advances
in Neural Information Processing Systems, volume 26.
Curran Associates, Inc.

https://iclr.cc/virtual_2020/poster_H1eA7AEtvS.html
https://iclr.cc/virtual_2020/poster_H1eA7AEtvS.html
https://iclr.cc/virtual_2020/poster_H1eA7AEtvS.html
https://doi.org/10.3233/FI-2010-304
https://doi.org/10.3233/FI-2010-304
https://proceedings.neurips.cc/paper_files/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf

